d_{κ}

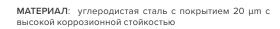
ИНСТРУМЕНТЫ ИЗО

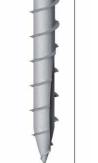
TLL EVO

AC233 | AC257 ESR-4645

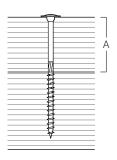
ШУРУП С ПОКРЫТИЕМ С4 EVO И ШИРОКОЙ ГОЛОВКОЙ

- Механические характеристики TLL и коррозионная стойкость покрытия EVO на эпоксидной основе с алюминиевыми чешуйками
- Отсутствие коррозии спустя 1440 часов воздействия солевого тумана (ISO 9227)
- Используется для наружного применения для класса эксплуатации 3 и класса атмосферной коррозии С4 (прибрежные и промышленные зоны)

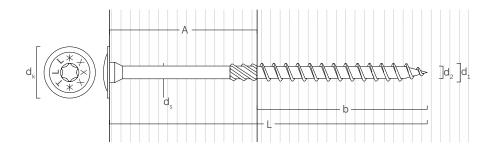




d_1	d_K	APT. N°	L	b	Α	шт.
[MM]	[MM]		[MM]	[MM]	[MM]	
6 TX 30	15,50	TLLEVO680	80	50	30	100
		TLLEVO6100	100	60	40	100
		TLLEVO6120	120	75	45	100
		TLLEVO6140	140	75	65	100
		TLLEVO6160	160	75	85	100
		TLLEVO6180	180	75	105	100
		TLLEVO6200	200	75	125	100
8 TX 40	19,00	TLLEVO8100	100	52	48	50
		TLLEVO8120	120	80	40	50
		TLLEVO8140	140	80	60	50
		TLLEVO8160	160	100	60	50
		TLLEVO8180	180	100	80	50
		TLLEVO8200	200	100	100	50



b


A максимальная толщина прикрепляемой плиты

 d_1

ГЕОМЕТРИЯ И МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

номинальный диаметр	d ₁	[MM]	6	8
диаметр головки	d _K	[MM]	15,50	19,00
диаметр наконечника	d_2	[MM]	3,95	5,40
диаметр стержня	d_S	[MM]	4,30	5,80
толщина головки	t ₁	[MM]	4,50	4,50
диаметр предварительного отверстия ⁽¹⁾	d_V	[MM]	4,0	5,0
характеристический момент пластической деформации	$M_{y,k}$	[Нм]	9,5	20,1
характеристическая прочность при выдергивании(2)	$f_{ax,k}$	[H/мм ²]	11,7	11,7
характеристическая прочность при выдергивании головки ⁽²⁾	f _{head,k}	[H/мм²]	10,5	10,5
характеристическая прочность на разрыв	f _{tens,k}	[ĸH]	11,3	20,1

пПредварительное отверстие для хвойных пород дерева (softwood).

(2)Для хвойных пород максимальной плотностью 440 кг/м³. Принятая плотность ρ_а = 350 кг/м³.

Чтобы ознакомиться с применением с другими материалами или материалами высокой плотности, ознакомьтесь с ETA-11/0030.

СТАТИЧЕСКИЕ ВЕЛИЧИНЫ

				ПИЛЫ	РАСТЯЖЕНИЕ		
геометрия				дерево-дерево	выдергивание полнонарезного ⁽¹⁾	погружение головки ⁽²⁾	
L b A A			A 				
d ₁	L	b	А	$R_{V,k}$	R _{ax,k}	R _{head,k}	
[MM]	[мм]	[MM]	[MM]	[ĸH]	[ĸH]	[ĸH]	
	80	50	30	2,15	3,79	2,72	
	100	60	40	2,35	4,55	2,72	
	120	75	45	2,35	5,68	2,72	
6	140	75	65	2,35	5,68	2,72	
	160	75	85	2,35	5,68	2,72	
	180	75	105	2,35	5,68	2,72	
	200	75	125	2,35	5,68	2,72	
	100	52	48	3,71	5,25	4,09	
	120	80	40	3,41	8,08	4,09	
	140	80	60	3,71	8,08	4,09	
8	160	100	60	3,71	10,10	4,09	
	180	100	80	3,71	10,10	4,09	
	200	100	100	3,71	10,10	4,09	

ПРИМЕЧАНИЕ

- (1) Осевое сопротивление резьбы выдергиванию было рассчитано для случая, когда угол между волокнами и соединительным элементом составляет 90°, а длина глубина ввинчивания равна b.
- (2) Сопротивление протаскиванию головки по оси рассчитывалось для деревянных элементов.

ОСНОВНЫЕ ПРИНЦИПЫ

- Характеристические величины согласно стандарту EN 1995:2014 в соответствии с ETA-11/0030.
 Расчетные значения получены на основании нормативных значений следующим образом:

Pасчетные зна
$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Коэффициенты γ_M и k_{mod} должны приниматься в соответствии с действующими правилами, примененными для выполнения расчета. Ознакомится со значениями механической прочности и геометрии шурупов можно в документе ETA-11/0030.

- При расчете учитывается объемная масса деревянных элементов, равный ρ_k = 385 кг/м 3 .

- Для расчета значений принимается, что резьбовая часть полностью завинчивается в дерево.
 Определение размеров и контроль деревянных элементов должны производиться отдельно.
 Характеристическое сопротивление сдвигу рассчитывается для винтов, введенных без предварительного сверления.